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ABSTRACT 

' 9  / 7 D  
The midcourse phase of a ballistic interplanetary flight is appr 

by an elliptical reference trajectory. Linear perturbation theory is used to 
define the actual path of the vehicle relative to the reference path. The equa- 
tions of motion for the actual path constitute a sixth-order linear system with 
variable coefficients. Two methods are presented for solving this  system 
analytically to yield the variations in position and velocity as a continuous 
function of time. 

The first solution exploits the fact that variations in the reference tra- 
jectory plane a r e  uncoupled from variations normal to the plane. Thus, by 
the choice of a coordinate system in which one of the three orthogonal axes 
is perpendicular to the reference trajectory plane, the sixth-order system is 
separated into two independent systems, one of fourth order and one of second 
order. Both of these sub-systems a r e  solved by direct integration. 

The second method of solution utilizes the fact that the actual trajectory, 
like the reference trajectory, is an ellipse, but the orbital elements of the 
two ellipses a r e  not identical. Linear theory is used to determine variations 
in position and velocity as a function of variations in the six orbital elements. 
It is shown that the six constants of integration obtained in the first solution 
can be expressed in te rms  of the variations of the orbital elements, and hence 
the two forms of solution a r e  equivalent. r9 Clt-ftfdP - 

The six-component state vector at any time t is defined as the vector con- 
sisting of the three components of position variation and the three components 
of velocity variation at that time. The state vector at t .  is related to the state 

vector at ti by means of a 6-by-6 matrix known as the transition matrix. Ana- 
lytic expressions for the elements of the transition matrix a r e  obtained for any 
arbitrary values of ti and t 

J 

j '  
It is assumed that a single application of impulsive thrust is to  be used 

during the midcourse phase to correct the vehicle's path so that it reaches its 
destination at the proper time, In the linear theory the three components of 
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the required step change in velocity of the vehicle are related to the three 
components of the predicted position deviation at  the destination by means of 
a 3-by-3 matrix known as the correction matrix. Analytic expressions for 
the elements of the correction matrix a r e  derived. The uncoupling feature 
causes four of the nine elements of the matrix to  be identically zero. 

There is a brief discussion of the ways in which the equations that have 
been developed can be utilized on a manned interplanetary mission. 

ASLA 

iv 



TABLE OF CONTENTS 

1. Introduction . . . . . . . . . . . . . . . . 1 

2. Coordinate Systems . . . . . . . . . . . . 4 

3. Equations of Motion in Component Form . . . . . . 5 

4. Variant Motion in the Reference Trajectory Plane . . . . 9 

5. Variant Motion Normal to the Reference Trajectory Plane. . 18 

6. Variations in the Orbital Elements. . . . . . . . . . 19 

7. The State Vector. . . . . . . . . . . 24 

8. The Transition Matrix. . . . . . . . . . . . 29 

9. The CorrectionMatrix. . . . . . . . . . . . . . 33 

10. Comments on the Application of the Analytic Solution . . . 40 

REFERENCES . . . . . . . . . . . . . . . 42 

V 



NOMENCLATURE 

General Notation 

An asterisk over a capital let ter indicates a matrix. 

An underlined lower-case letter indicates a vector, which is equivalent 

I 

I 
I to  a one-column matrix. A vector symbol without the underlining indicates 

the magnitude of the vector. 

A single dot over a symbol indicates the first derivative with respect to  

Time derivatives of vectors are taken with 

I 

time of the quantity represented by the symbol. 
derivative with respect to time. 
respect to an inertial coordinate system. 

Two dots indicate the second 

English Symbols 

a 

ai 
x4 * 

Ala . . . 
C - 
C 

8 j i  

d. -1 

D 

e 

e - 

E 

EM 

semi-major axis of reference trajectory 

i-component of acceleration vector 

2-by-2 sub-matrices of 9, (See Section 8. ) 

midcourse velocity correction vector 

constant of integration (See Section 4. ) 

transition matrix; 6-by- 6 matrix relating components 
of & x .  to components of 6x. --J -1 

position vector of space vehicle relative to i-th 
disturbing body (See Section 1. ) 

operator representing first derivative with respect 
to time (See Section 4. ) 

eccentricity of reference trajectory 

six- component vector consisting of variations in the 
orbital elements 

eccentric anomaly on reference trajectory 

one half the difference between E .  and Ei (See Section 8. 
J 
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EP 
~ f 

I f '  

I F 

I G 
I d 
I 
1 

h 

i 

6 i  

fN 

3 i j  

kl '  skg 

KCD 

8 i j  

m 

"0 

, "i 

I M 

one half the sum of E .  and Ei (See Section 8 . )  

true anomaly on reference trajectory (See Figure 2. ) 
J 

t rue anomaly on actual trajectory 

rate of change of true anomaly; angular velocity of 
r s z coordinate system 

operator r epre sent ing f i r  st derivative with respect 
to  true anomaly (See Section 4. ) 

angle between velocity vector on reference trajectory 
and y-axis (See Figure 2.)  

angular velocity of p q z coordinate system 

constant of gravitation 

3-by- 3 matrix relating components of 6 E' to components 
of 6 r (See Section 1. ) 

orbital angular momentum per  unit mass  of space 
vehicle 

- 
- 

inclination angle of reference trajectory plane 

angle between 2'-axis and z-axis (See Figure 3.) 

N-by-N identity matrix 

3-by-3 matrix relating components of 6v. to components of 
6 r. when 6 r .  is constant (See Section 9. ) 

constants of integration (See Sections 4 & 5.) 

-1 

-1 --J 

3-by-3 correction matrix 

3-by- 3 matrix relating components of 6v. to components 
of 6 r .  when 6 r .  is constant (See Section 9.) 

mass of space vehicle 

-1 

-3 -1 

mass of sun 

mass of i-th disturbing body (See Section 1. ) 

mean anomaly on reference trajectory 

vii 



MO 
value of mean anomaly at t = 0 (epoch) 

* 
M.. 

J1 

n 
n 
* 

j i  

0 - * 
ON 

P 

* 
P 

d 
r 

r. 

R 
-1 

RTP 

S 

s j i  

3-by-3 matrix relating components of 6 r .  to components 
-1 

of 6r. 
-1 

when 6v. is 
-1 

constant. (See Section-8. ) 

number of disturbing bodies (See Section 1. 
mean angular motion (See Section 6 . )  

3-by- 3 matrix relating components of 6 r . to  components 
of 6v. when 6r. is constant. (See Section 8.)  

zero vector 

-3 
-1 -1 

N-by-N zero matrix 

distance along first axis of p q z coordinate system 
(See Figure 2.) 

contribution of central body to 8 (See Section 1. 

distance along second axis of p q z coordinate system 
(See Figure 2.)  

* 
contribution of disturbing bodies to  G (See Section 1. ) 

distance along first axes of r s z coordinate system 
(See Figure 2.) 

position vector of space vehicle on reference trajectory 

position vector of space vehicle on actual trajectory 

velocity vector of space vehicle on reference trajectory 

position vector of i-th disturbing body (See Section 1. ) 

disturbing function (See Section 1. ) 

reference trajectory plane 

distance along second axis of r s z coordinate system 
(See Figure 2.) 

3-by- 3 matrix relating components of 6v. to components 
of 6 r. when 6v. is constant (See Section 8. ) 

time 

--J 
-1 -1 

t 
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I T.. 
31 

U 

V 

V 

vi 

W 

X 

X - 
X 

Y 

* 
y4 
Z 

Greek Symbols 

Y 

6 

V 

time of perihelion passage for reference trajectory 

3-by- 3 matrix relating components of 6 v. to components 
of 6v. when 6 r .  is constant (See Section 8. ) 

integration variable (See Section 4. ) 

integration variable (See Section 4. ) 

magnitude of velocity vector (See Section 7. ) 

i- component of velocity vector 

integration variable (See Section 4. ) 

-J 
-1 -1 

distance along first axis of non-rotating x y z coordinate 
system (See Figure 2. ) 

six- component vector consisting of 6 r and 6 - v 

singularity factor (See Section 9. ) 

- 

distance along second axis of non-rotating x y z coordinate 
system (See Figure 2.) 

6-by-6 matrix relating components of x to components of e 
(See Section 8. ) 

4-by-4 submatrix of Y 

- - 

roc 

distance normal to reference trajectory plane 

flight path angle on reference trajectory (See Figure 2. ) 

operator signifying first variation 

gradient of a scalar quantity 

gravitational invariant in sun's gravitational field 

summation symbol 

longitude of perihelion of reference trajectory 

longitude of perihelion of actual trajectory relative to 
perihelion of reference trajectory 

latitude of perihelion of reference trajectory 
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6 0  

Superscripts 

T 

-1 

I 

+ 

Sub s c r  ipt s 

C 

D 

i 

S 

X 

Y 

Z 

angle, in actual trajectory plane, between positive half 
of line of nodes and XI-axis. (See Figure 3. )  

longitude of ascending node of reference trajectory 

angle, in reference trajectory plane, between x-axis 
and positive half of line of nodes (See Figure 3. )  

transpose of a vector or  matrix 

inverse of a square matrix 

pertaining to actual trajectory as opposed to reference 
trajectory (See Section 6 .  ) 

pertaining to variant path before application of midcourse 
correction 

pertaining to variation path after application of midcourse 
correct ion 

corresponding to time of midcourse velocity correction 

corresponding to nominal time of arrival at destination 

general index; i = 1,. . . , n 

corresponding to time ti 

corresponding to time t 

component along p- axis 

component along q-axis 

component along r- axis 

component along s- axis 

component along x-axis 

component along y-axis 

component along z-axis 

j 

X 



1. Introduction 

The vector 
is 

equation of motion of a space vehicle in a gravitational field 

- E' +%E = VR 
r 

For the midcourse section of interplanetary flights - r is normally defined 
as  the position vector of the vehicle relative to the center of the sun. The 
vehicle's acceleration vector is 'G. - The symbol r, without the underlining, 
represents the magnitude of - r. 

The gravitational parameter p is defined by 

p = G ( m o + m )  (1 -2)  

where G is the constant of gravitation, and m 
mass  of the sun and the mass of the space vehicle. For all practical purposes, 

and m are, respectively, the 
0 

p = Gmo 

The vector quantity VR is the gradient of the disturbing function R. 

n 

i =  1 

R = G c  mi (-- 1 E * E i  
3 

di ri 

VR represents the effect on vehicle motion caused by the gravitational 
fields of the "disturbing" masses,  usually planets. di is the distance from 

the vehicle of the i-th planet, whose mass is mi. zi is the position vector 

of the i- th planet with respect to the sun's center. There are n disturbing 
masses.  

The position relationships of the space vehicle relative to the sun  and 
one disturbing planet a r e  indicated i n  Figure 1. 
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p, Po' P1 - three bodies treated as hypothetical point-masses 

P - space vehicle 

sun - 
0 

P 

- "disturbing" planet p1 

Figure 1. Vector Diagram for the Three-Body Problem 
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In the formulation of Equation (1 - l), the space vehicle, sun, and disturbing 
bodies a r e  all assumed to be point masses. A more exact equation is 
obtained if  oblateness effects a r e  taken into account. I 

a r e  carefully chosen so that a suitable set of end conditions (position and 

The actual trajectory of a space vehicle differs from the pre-computed 
I reference trajectory due to imperfect instrumentation and inexact guidance 

equations. Because the differences between the two trajectories are 
assumed to be small, linear perturbation theory is used to express the 
equations of motion in simple matrix form. The dependent variable r in 
Equation (1-1) is replaced by 6r, - the variation in position between actual 

- I 

I trajectory and reference trajectory. The matrix equation is 

4 
Si.'= G 6 r  - - (1-5) 

$< 

An asterisk over a capital letter signifies a matrix. The matrix G may be 

i subdivided into two matrices, one giving the effect of the central body and 
the other giving the effect of the disturbing bodies. 

where 

96 3 r r '  * 
.p = +T r ( -- r 2 - 1 3 )  

m 

(1-6) 

3k 

The superscript T refers  to the transpose of a vector or matrix. I3 is the * *< t 

3-by-3 identity matrix. G, P, and €2 are all symmetric 3-by-3 matrices.  
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The derivation of Equations (1 -5 )  through ( 1 - 8 )  is given in Reference (1). 

In the midcourse phase of an interplanetary flight, when the space 
vehicle is appreciably beyond the sphere of influence of the launch planet and 
is still a considerable distance from the sphere of influence of the destina- 
tion planet, the motion of the vehicle is essentially two-body motion in the 
sun's gravitational field. Under these conditions Equations (1 - 1 ) and (1 - 5) 

I 

I 
I 

become, respectively, I 
.. 
r +  P r = o  - - 3- r 

(1-9) 

(1-10) 

The analytic solution of (1-9)  is the familiar equation of the conic 
section. It is  the objective of this paper to find and exploit an analytic 
solution of (1-10). 

It should be noted that the reference trajectory is obtained by numerical 
integration of a modified form of (1-1); i t  is not a true conic section. The 
variations used in  (1-10) a r e  the variations from the reference trajectory, 
not variations from a conic section. Thus, the disturbing effects of the 
planets a r e  taken into account in determining the basic reference trajectory 
but a r e  neglected in determining variations in acceleration due to variations 
in position. 

2. Coordinate Systems 

Because conic sections, which constitute the family of solutions of (1-9), 

a r e  planar curves, it  is expedient to choose a three-dimensional coordinate 
system in which two of the three axes lie in the plane of the conic section 
solution and the third axis is normal to that plane. The plane w i l l  be 
referred to as  the ' 'reference trajectory plane" (RTP). 

Three different coordinate systems have been found useful in the analysis 
of interplanetary midcourse motion. All  three a r e  right-handed rectilinear 
systems i n  which the origin is at the center of the sun and the z-axis is 
perpendicular to the RTP, positive in the direction of the vehicle's orbital 
angular momentum vector. 
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In the x y z system the axes a r e  non-rotating. The x-axis lies in the 
direction of perihelion; the y-axis is in the direction of the latus rectum. 
This system is most appropriate for computing the reference trajectory 
from Equation (1-1) or when Equation ( 1 - 5 )  must be used for the variational 
analysis. 

The r s z system rotates about the z-axis with angular velocity f ,  where 
f is the true anomaly on the reference trajectory. The r-axis  is in the 
direction of the position vector - r; the s-axis is in the transverse direction, 
90' ahead of the r-axis in the direction of vehicle motion. The r s z system 
is used in obtaining the analytic solution of (1-10). 

The third coordinate system is the p q z system, which rotates about 
the z-axis with angular velocity g, where g is the angle between the velocity 
vector - 6 and the y-axis. The q-axis is in the direction of - s; the p-axis is 
90' behind the q-axis. This system is the most convenient one for expressing 
the analytic forms of the elements of the basic guidance matrices that are 
defined in the later sections of this paper. 

The angular relations among the three systems a r e  shown in Figure 2. 

3.  Equations of Motion in Component Form 

In the x y z coordinate system the component equations of (1-9)  are 

[I] + %  r 

X 0 

Y I = [  0 

(3-1) 

No z-axis equation is needed since z is identically zero for all values of t. 
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REFERENCE 

S 

Fq is parallel to - v. 
F - attractive focus 
P - vehicle position 
r - position vector 
- G - velocity vector 
- 

(center of sun) 
on reference trajectory 

f = 4 xFr = 4 yFs = true anomaly = angle between r s z 

y = 4 rFp  = 4 sFq = flight path angle = angle between p q z 

coordinate system and x y z coordinate system 

coordinate system and r s z coordinate system 

= angle between p q z coordinate system and x y z 

g = O x F p = Q y F q = f - y  

coordinate system 

Figure 2. Orientations of Reference Trajectory Coordinate Systems 
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, In the r s z coordinate system, both s and z a r e  identically zero. The 

component equations a r e  

I-1 
r + 3  

0 

0 
I ,  

(3-2) 

~ These equations can be integrated directly, as  shown in any basic text on 
celestial mechanics such as Reference (2).  The solution is 

I 

1 + e cos f 

where 

(3-4) 2 h = r f  

The constant h is the orbital angular momentum per unit mass  of the space 
vehicle, e is the eccentricity of the conic section. 

*< 
When the r s z system is used to expand Equation (1- lo) ,  P becomes a 

diagonal matrix. 

(3-5) 

The variations in position, velocity, and acceleration a r e  given by 
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6 r  = - 

6r  

6 s  

6 2  

6 r  

When Equations (3-2) ,  (3-51, and ( 3 - 8 )  are substituted into (1-101, the resulting 
matriy equation is 

1 
The equations of (3 -9 )  constitute the variant equations of motion in the 

r s z coordinate system. There are three second-order linear differential 
equations with time-varying coefficients. The first two equations are coupled 
equations in the dependent variables 6 r and 6 f .  The third equation contains 
only one dependent variable, 6 z. Consequently, the system, which is 
basically of sixth order,  can be separated into two uncoupled subsystems, 
one of fourth order and the other of second order.  In the following sections 
each of the two subsystems is integrated analytically. 

a 



4. Variant Motion in the Reference Trajectory Plane 7 

If the operator D is used to signify the first derivative with respect to 
time, the f i rs t  two equations of (3-9)  may be written as 

D 2 - i  2 2  -3 
r 

2i'D+'f '  

- 2 r i ~  

( r ~ +  2;) D 

6 r  

6f  

It is noteworthy that the equations depend on the f i rs t  and second time 
derivatives of 6 f ,  but not on 6 f itself. Then it can be seen by inspection 
that one solution of the coupled equations of (4-1) is 

b r = o  6 f = k l  (4-2) 

where kl is an arbitrary constant. 

The system represented by (4-1) may be regarded as a third-order 
system in the dependent variables 6 r and 6 $. It is simplified i f  the independent 
variable is changed from t to f .  Let operator F represent the first derivative 
with respect to f .  Then, 

D = PF 

D2 = f F  (fF) = f 2 ( F  - 2e l+ecos f  sin f 

(4- 3) 

(4-4) 

When these relations are used in conjunction with (3-3) and (3-4), the 
differential equations of (4- 1) become 
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(4-5) 

The variable 6 f may be eliminated from the two equation's to yield a 
single equation in 6 r. 

2 [ (1 + ecos f )  F3 - (3e'sinf) F 

+ (1 + ecos f )  F - (3es inf ) l  6 r  = 0 

The te rms  of this equation may be re-arranged as follows: 

2 
[ ( l  + e c o s f ) F  - (3es in f ) l  (F + 1) d r  = 0 

Two solutions of (4-7) a r e  obtained from 

(4-6)  

1- 

These solutions a r e  obviously k2 cos f and k3 sinf. For the former,  

2 
.kL F (6 f )  = - k2 [ 2 cos f + e (cos2 f - sin2 f )  ] 
c1 

Upon integration, 

6f = -k2 5 ( 2 + e c o s f ) s i n f  

(4- 9 1 

(4-10) 
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Similarly, for the solution k3 sin f, 

h2 - F ( 6 f )  = -2k3 (1 + ecos f )  sinf 
c1 I 

I-L ( 2  + e cos f )  cos f 
6 f  = kg 7 

(4- 11) 

(4- 1 2 )  

The fourth solution for the variant motion in the RTP can be obtained by 
the method of variation of parameters, which is described in the f i rs t  

I chapter of Reference (3). A new variable w is introduced and is defined by 

In te rms  of this new variable, Equation (4-7) becomes 

I 3es in f  - - 
l+e cos f 

~- 
df 

The variables w and f a r e  separable. 

3 e s i n f  df - - 0  dW 
W l+e cos f 
- L -  

I 
The result of integrating this equation is 

I logw + 3 log  (1 + e c o s f )  l o g c  

I 

(4-14) 

(4- 15) 

(4- 16)  
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where C is an arbitrary constant. Then, 

C 
(1 + e c o s f )  w = ( F ~ +  1 ) s r  = 3 (4-17) 

Since the homogeneous solutions of (4-17) for 6 r are cos f and sinf,  it is I 
assumed that 

6 r  = u c o s f + v s i n f  (4-18) 

where u and v a r e  functions of f which satisfy the following criteria: 
I 

du dv cosf - + s i n f  - = 0 df df 

du dv c 
3 - s in f  - +  cosf - = 

(1 + ecos f )  df 

du and - dv is The solution for - d f  df 

du C s in  f 
d f  (1 + e c o s f ) 3  
- =  - 

dv c cos f 
df 
- =  

3 (1 + e c o s f )  

The first of these two equations may be integrated directly, 

C d (1 + e c o s f )  du = - e 3 (1 + ecos f )  

(4-19) 

(4-20) 

(4-21) 

(4-22)  

(4-23) 

1 2  



C - 
2 u =  

2 e (1 + ecos f )  
(4-24) 

Integration of Equation (4-22)  is less obvious. It can be handled by making, 
a change in the independent variable; the change to be made depends on the 
nature of the conic section that constitutes the reference trajectory. In this 
paper, which is concerned with midcourse characteristics, the reference 
trajectory is assumed to be an ellipse. The new variable is the eccentric 
anomaly E, which can be related to f by rewriting Equation ( 3 - 3 )  as 
follows : 

a ( l  - e 2 1 
= a (1 - e c o s E )  1 + ecosf  r =  (4-25) 

I 

I 

where a is the semi-major axis of the reference trajectory. The quantity 
I 

I 
a ( l  - e 2 ) is equal to the length of the semi-latus rectum of the reference 
trajectory. 

(4-26) 

The transformations from f to E, and vice versa, a r e  accomplished by 
~ the following equations: 

sin f = (1 - e2)1 /2s inE 
1 - e c o s E  

s inE = (1 - e2l1I2sinf 
1 + ecos f  

(4- 27)  

cos E - e 
C o s f ' l - e c o s E  (4-28)  cos^ = cos f + e 

l+e cos f 
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d f  = ( l -e2)1/2 d E 
1-e cos E 

l -e2)1/2 d f  
l+e  cos f d E  = 

2 (1 + e cos f )  (1 - e cos E) = 1 - e 

(4-29) 

(4- 30) 

Equation (4-22) becomes 

c cos f d f  
3 dv = 

( l+e  cos f )  

- cos E - e) (1-ecos E)  (1-e 2)1/2 d E  - '1 - e c o s E  (1-e2)3 1-ecos E 

- C 2 2 [ - e +  ( l+e  ) c o s E - e c o s  E] d E  (4-31) - 
(1-e2)5/2 

The integral of this equation is 

2 1 - 3 e E +  [ 2( l+e  - e c o s E ]  s inE  1 (4-32) -c 
2 5 / 2  2(1-e ) 

v -  

By means of Kepler's equation 

M =  E - e s i n E  (4-33) 

the mean anomaly M may be introduced to replace E in  the secular term 
of (4-32), and the equation can then be written in terms of the time-varying 
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quantities M and f .  

- 3 e M + (2  - e2 - e cos E) sin E] C 
2 512 [ v =  

2(1-e ) 

l + e c o s f  
- - 2 - e  2 -liecosf e c o s f + e )  

(4-34) - C 3 e M  + j 2 + e c o s f )  sinf 
(1 + e cos f )  

- 

I No additional constants of integration a r e  needed in (4-24) and (4-34), 
I because such constants would simply be multiplied by cos f and sin f ,  

respectively, in the determination of 6 s; hence they can be incorporated 
into k2 and k3. I 

I Equations (4-24) and (4-34) a r e  substituted into (4-18). 

3 M e gin f 
2 512 

- -  
2 ( l - e  ) 2 2e (1 + e cos f )  

6 r  = 

2 (2+ecos f )  sin f 1 
2 2 1  

+ ”  
2 (1 - e (1 + e cos f )  

- 3Mesinf  + 1 - e] (4-35) -2. [- 2(1 - e2 )3 /2  l + e c o s f  1 - e  
- 
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may be incorporated into k2, so that the last  t e rm C 

z e ( 1 - e  ) 2 The constant - 

in (4-35) is eliminated. Finally, the fourth solution for 6r is 
~ 

2 3/2 -1 l + e c o s f  
3Mes in f  + 

z ( 1 - e )  
6 r  = k4 [- 

where 

(4- 36) 

- C k4 - - 2 1 - e  
(4-37) I 

The fourth solution for 6 f is obtained from the upper equation of (4-5). 
The first  and second derivatives c f  6r with respect to f must f i rs t  be 
determined. By utilizing the fact that 

I 

2 3/2 
0 

F ( M )  = ( 1 - e )  
(1 + e cos f ) ”  

i t  is found that 

F (6 r )  = --  

(4-38) 

(4- 39) 

1 - e 2  ] (4-40) 3 + 2 3 M e  sinf 1 F (6r) = k4 1 + 6 ‘osf (1 + e cos f )  

Then, from (4-5), 
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- l1 

3 k 4 p  [ 2 M  ( l + e c o s f )  esinf 
3/2 F (Of) = - 

2h2 (1 - e') 

This equation is integrated to solve for 6f. 

- df ] 2 M  ( l + e c o s f )  d ( l + e c o s f )  
2 312 d (6f) = - 

2h2 ( 1 - e  1 

2 
+ ( l + e c o s f )  dM - df} 

( 1 - e )  2 3/2 

3k4P 
- -  - 2 312 d {  M ( l t e ~ o s f ) ~ ]  

2 h 2 ( 1 - e  ) 

3k4F 2 M ( l + e c o s f )  - - -  
2 3/2 6f 

2h2 ( 1 - e  ) 

(4-41) 

(4-42) 

(4-43) 

I No added constant of integration is needed in  the last  integration because of 
the presence of k l .  

The complete equations for 6 r  and 6s a r e  I I 
6 r  = k2 cos f + k3 sinf 

1 + e  cos f 
3 Me  sinf + 

2 3/2 + k4 (- 2 ( 1 - e )  
(4-44) 
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klh2 k2 ( 2 + e c o s f )  sinf 
- 

p(l+ e cos f )  l + e c o s f  6 s  = r6f = 

k3 ( 2 + e c o s f )  cosf 
1 + ecosf  

3k4 M ( l + e c o s f )  - 
2 3 1 2  

+ 
Z ( 1 - e )  

5. Variant Motion Normal to the Reference Trajectory Plane 

The equation for the variant motion along the z-axis is 

d;+% 62 = 0 
r 

(4-45) 

(5-1) 

Comparison of this equation with the equations of (3-1) indicates that x and 
y are independent solutions for 6z. 

d z =  k 5 x  + k y 6 

= r (k5 cos f + k6 sin f )  

k 

kg 
= (k5 2 + k62)1/2 r sin f + tan - 1 5  ) 

(k5 cos f + k6 sin f )  - - h2 
p ( l + e c o s f )  

(5-3) 

(5 - 4) 

(5 -5)  
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6 .  Variations in the Orbital Elements 

The last three sections have presented a method of determining the differ- 
ence in  position between the actual trajectory and the reference trajectory by 
formulating and then integrating the linearized differential equations of the 
variant motion. 
premise of the second solution is that the actual trajectory, like the reference 
trajectory, is a conic section and that the two trajectories lie close to each other 
in  space. The procedure involves the determination of the manner in  which vari-  
ations in each of the six orbital elements that characterize the vehicle's refer- 
ence trajectory affect the vehicle's position as a function of time. 

A second method is presented in this section. The fundamental 

A common grouping of the orbital elements consists of the semi-major axis 
length a, the eccentricity e, the longitude 0 of the ascending node, the inclina- 
tion i, the latitude w of perihelion, and the t ime to of perihelion passage. 
the following analysis the  longitud,: $ of perihelion and the mean anomaly Mo at 
epoch a r e  also used. Since only six elements are independent, the last two are 
linearly related to the first six. 

In 

$ = n + w  (6-1) 

Mo = - n t o  (6-2) 

where n is the mean angular motion, i. e., the average angular velocity of the 
space vehicle in its elliptical orbit about the sun. 

The analysis that follows is applicable to elliptical reference trajectories 
of moderate eccentricity. The word "moderate" is intended to  signify that the 
eccentricity lies between zero and unity but is significantly different from either 
boundary value. 

The space orientation of the actual trajectory relative to  the reference tra- 
jectory is determined by the  three angles bn, b w, and b i .  

of the reference trajectory, 6 w lies in the plane of the actual trajectory, and 
6 i  lies in the  plane perpendicular to the l ine of nodes. 

trated in Figure 3 .  
the two trajectories coincide. 

6n l ies in the plane 

These angles are illus- 

If all three angles a r e  zero, the major and minor axes of 

The constraint on the angular variations is that they be such that the dif- 
ference in position between a point on the actual trajectory and a point on the 
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ACTUAL 
TRAJECTORY 

z'\ I L  
\ s i  I 

REFERENCE 

- 
X '  

F - focus at center of sun 
FN - line of nodes 

Fx,Fy,Fz - axes of reference trajectory coordinate system 

Fxl,Fyl,Fzl - axes of actual trajectory coordinate system 
dn, d i , d w  - orientation angles between two coordinate systems 

- r - position vector on reference trajectory at time t 

- r' - position vector on actual trajectory at time t 

f - true anomaly on reference trajectory at time t 

f '  - true anomaly on actual trajectory at time t 

Figure 3. Orientation of Actual Trajectory Relative to Reference 
Trajectory 
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reference trajectory at any specified time be small. 
even though 6 0  and 6 o a r e  large angles, as long as their  sum, which is equal 
to 6 $, is a small angle. The angle 6 i is always small. The variations in the 
anomalies ( 6 f ,  6E, 6M, 6Mo) a re  also small. 

The constraint can be met 

The prime notation is used to distinguish quantities on the actual trajectory 
from the corresponding quantities on the reference trajectory. Thus, r' is the 
radius vector on the actual trajectory corresponding to r on the reference tra- 
jectory. The components of - r1 in the r s z coordinate system a r e  designated 
rb  , rfSJ and rlZ; the corresponding components of - r are r, 0, and 0. F rom 
Figure 3, the components of position variation a r e  

- 
m 

6 r  = rfr - r 

= r1 [cos  (f' + 6 w) cos (f - 60) 

+ sin (f' + 6 w )  cos 62 s in  (f - an)] - r 

= r' cos (6f + 6$) - r 

6 s  = rls - 0 

= r' [ - cos (f '  + 6 w )  sin (f - 60) 

+ s in  (f' + 6 w )  cos 6i cos (f - 6n) J 

= r1 sin ( 6 f  +6$) 

= r ( b f + 6 $ )  

6z = rlz - 0 

= r1 sin (f' + 60) sin 6 i  

= r 6 i  sin (f + 6 a) 

= r 6 i  s in  (f - 60) 

( 6 - 3 )  

( 6 - 4 )  

( 6 -  5) 
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By the u s e  of Equation (6- 5) 6 z can be determined as a function of r and f, 

which are known time-varying functions of the reference trajectory, and the two 
orbital element variations 6 i  and 6Q. In Equations (6-3) and (6-4) the relations 
for the components 6 r and 6 s must be expressed in  similar fashion in t e rms  of 
the other orbital element variations. The procedure to be followed for 6r is to 
w r i t e  6 r  as a function of the orbital element variations and &E, then to find 6E 
in te rms  of the orbital element variations, and finally to combine the two rela- 
tions. In the case of 6 s, the first  step involves expressing 6 f as a function of 
the variations in the elements and 6E, then proceeding in a manner analogous 
to that for 6 r .  

6 r  is obtained from the basic equation 

r = a (1 - e cos E) (6-6) 

The variational form obtained from this equation is 

(6-  7) I 6a 6 r  = a [ (1 - e cos E) a - cos E b e  + e sin E 6 E  

The relationship used to obtain 6 f  is 

The variational form is 

( l + e c o s f ) ( - c o s E 6 e + e s i n E  6E) 

+ (1 - e cos E) (cos f b e  - e sin f 6f) = - 2 e 6e 

This equation is solved for 6 f .  

sin f 
1 - e  

e + 1 + e cos f 

( 1 - e )  

6 f = -  2 2 v2 

T w o  expressions for the  mean anomaly are used to determine 6E. 

M = n (t - to) = E - e sin E 

22 
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Then, 

6 M  = (t - to) bn - n 6 t o  

= - s i n E  6 e r ( l  - e cosE)  6E (6- 12) 

The solution for b E  is 

(6- 13) = 1 - e cos E ( ~ + - n t i t ~ + s i n ~ & e  ) 
- 'n is not one of the orbital element variations being used; it can be expressed 

6a n 
in terms of a by means of Kepler's third law of planetary motion, which states 
that 

(6- 14) 2 3  p = n  a 

Since p is invariant, 
3 2 2  6 ~ = 0 = 2 n a  6 n + 3 n  a 6a 

and 

(6-15) 

(6-16) 

Equations (6-7), (6- 131, and (6-16) are  combined to express 6 r  i n  te rms  
of the variations in the orbital elements. Al l  sinusoidal te rms  a r e  written in 
te rms  of the true anomaly f rather than the eccentric anomaly E. 
tained from Equations (6-4), (6- lo), (6- 131, and (6- 16), 6 z from Equation 
(6- 5). The final equations for the components of 6y a r e  

6 s is ob- 

3 M e sin f 2 
1 - e  - 8 r  = [ (1 + e cos f 

1 - e s inf  n 6 t o  - cos f be 1/ 2 
(1 - e2) 

(6-17) 
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n 1 

b i  ( s i n f  cos l j s t -  cos f sin 6 Q )  h2 
p (1 + e cos f )  

6 2  = 

(6- 18) 

(6- 19) 

When (6-171, (6-18), and (6-19) are compared with (4-44), (4-451, and (5-5), 

the six constants of integration kl through k6 can be written in te rms  of the 
orbital element variations. 

7. The State Vector 

- r  
2 3 1 2  ( 1 - 8 )  

b e  - h2 

2 h e  n 6 t  - 

- b i  sin 652 

(6- 20) 

The "state" of a space vehicle on its actual trajectory at some specified 
time ti may be defined in te rms  of a six-component vector x. which consists of 
the three components of position variation and the three components of velocity 
variation at that time. 

-1 



x =  -i (7-1) 

The subscript i refers t o  conditions existing at t ime ti. 

The first three components of - x at some generalized t ime t are given in  the 
~ 

I r s z coordinate systembyEquations(6-17), (6-181, and (6-19). The last three 
components are obtained by vector differentiation! The state vector can then 
be expressed as the matrix product of a 6-by-6 time-varying matrix and a six- 
component vector composed of the variations in the orbital elements. The 
elements of the 6-by-6 matrix can be simplified by the use of the equations for 
the components of position, velocity, and acceleration along the reference tra- 
jectory. The resulting equation is (7-2). 

I 

I 

1 

The position components are 

x = r cos f = a(cos E - e) 

2 112 
y = r s i n f  = a (1  - e s i n E  

I 
The magnitude of the velocity vector - E is 

1 + e cos E 
= n a (  1 - e cos E 

(7-3) 

(7-4) 

(7-5) 

I 
The angle between the reference velocity vector i. and the s-axis is the flight 
path angle y ;  the angle between - ? and the y-axis is g. The components of - E are 

I - 

v = i = v s i n y = f e s i n f -  - h e sin E 
r r) 112 (7- 6) 

(1-e") . r 
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v S = r i = v c o s y = f  ( l + e c o s f ) = ;  

- 1  = tan 1 e sin f 

h sin E 
X n 112 v =I j, = - v sin g = - f sin f = - 

e sin E 
1/2 

(1 - e2) 

v = j r  = v cos g = /$(cos f +  e )  - - h cos E 
Y r (7-9) 

The magnitude of the reference acceleration vector i.' is designated arJ since 
the vector is in the radial direction. 

- 

(7-10) 

The physical significance of the eqliations in (7 -2)  is discussed in Reference (1). 

Because the p q z coordinate system is used in  the developments contained 
in the following section8 of this paper, the equations for  the components of the 
state vector in that system are presented in (7- 11). The relations for the addi- 
tional components that have been introduced are the following: 

(7- 12) h p = r c o s y = -  
V 

(7-13) h q = r sin y = -  tan y V 

v - 0  P t 

v = v  

The acceleration components are 

q 

, Since the direction of - is along the q-axis, 

a = - g v  - - -  $ ( p b +  qq) E = - C L  3 
P q2 r 

(7- 14) 

(7-15) 

(7-16) 

(7-17) 

27 



e- 
co 

c C 
Lo ro 

G m 
0 
0 

.d 
[I) 

0 0 3c 
I 

0 0 ?x 
I 

h 
0 0 h 0 0 ? 

0 
I 

n 

.! M G 
.d rn 
cd 
* 

I 
M 
rn 
0 
0 
rd 
I 

0 

0 

0 

I 

0 

cd c, 

*I * 

31 * 

CI 3 
n 

ml * 
I 

cd 1 
ml * 0 

I 
0 

0 

0 

0 

0 

L 
I 

1 

II 

0 
ro 

N 
Lo 

P 
Lo 

N 
3 

28 



.. .. 
(7-18) 

8. The Transition Matrix 

The 6-by-6 matrix which relates the state vector x to the state vector xi  * -j 
is known as the transition matrix Cji. 

* 
x = cjixi 
- j  

(8-1) 

The transition matrix has some interesting properties which are valid for 
many-body gravitational fields as we l l  as two-body fields. In the first place, 
it is obvious that, with the subscript notation being used, 

* * cii = (8-2) 
* 

where I6 is the 6-by- 6 identity matrix. Secondly, the inverse of the transition 
matrix is given by 

where the superscript -1 signifies the inverse. 
do with the inverse. C 

The third property also has to 
can be expressed in t e rms  of four 3-by-3 submatrices. 

* 
j i  

* c.. = 
J1 

* 
M.. 

J1 

* 
'ji 

* "'I Tji 

Then the inverse can be shown to be 

* T  

* T  

-Nji 

h T  * j i  

(8-5) 

This relationship is very useful, because it allows the 6-by- 6 transition matrix 
to be inverted by inspection. Its utilization is explained in greater detail in 
Reference (4). 

elements of the transition matrix vary with both ti and t 
always equal to unity. 

The fourth property is that, despite the fact that the non-zero 

its determinant is j, 
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t 
Ic..I = + 1 

J 1  
(8- 6) 

This equation is helpful in checking the accuracy of numerical computations of 
the elements of C.. 

J# 

31' 
Fo r  elliptical reference trajectories, the results of Section 7 can be used to 

determine analytic expressions for the elements of E ji. If a six-componentvector 

- e is defined as some linearly independent combination of the variations in the 
orbital elements and if the components of the state vector - x a r e  rearranged to 
form a modified state vector x whose four in-plane components precede the two 
normal components, then x. is related to - e by means of the 6-by-6 matrix Y 

t 

I -  t 

j' -J 

x = Y . e  
-j  J -  

* 
Since Y.  is non-singular for all values of time, 

J 

Then, 

I * * - I  I 
x = Y . Y  x. 
-j J i -1 

* I  
and a modified transition matrix C. .  

J 1  
matrices, one of which varies only with t .  and the other varies only with ti. 

can be expressed as the product of two 

J * I * * - I  
'ji J i  

= Y . Y  (8-10) 

The actual transition matrix C.., defined by Equations (7-1) and (8-1), is obtained 
from C.. by a rearrangement of matrix elements. 

J 1  
* I  J 1  

The amount of algebraic and trigonometric manipulation involved in perform- 
ing the matrix multiplication of (8-10) is quite formidable. It is therefore prudent 
to choose with great care the coordinate system in which - x and - x a re  expressed 
and the orbital elements which comprise e. The p q z coordinate system has been 
found to be most appropriate for expressing - x and - x ; in this system x is given 
by the column vector on the left side of Equation (7-11), and the order of the com- 
ponents of - x is the following: 

I 

I - 

1 

The p q z coordinate system is used exclusively in the analytic expressions in 
the remainder of this paper. The components chosen for - e a re  those shown 
in Equation (8-11). 
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e =  - 

1/2 
(1 - e2) 6 $  - n 6 t o  

6e 
112 

(1 - e2) 

ba - 1 
2 a 
- 

112 
(1 - e2) 6 2  cos 652 

6 i  s in  bS1 

(8-11) 

As a further aid ih simplifying the algebra, all time-varying quantities are ex- 
pressed in t e r m s  of the eccentric anomaly. 

* 
With these selections the elements of Y and its inverse are given by 

Equations (8- 12) and (8- 13). 
partitioning. It is interesting to compare the submatrix composed of the first 
four rows and the first four columns of Y wi th  the corresponding submatrix of 3 
Let the  former be designated Y4, and let it be further divided into four 2-by-2 
submatrices. 

The dashed lines in the equations indicate matrix 

* 
* 

* 
Examination of (8- 12) and (8- 13) shows that Y4-' is given by 

(8- 14) 

(8-15) 

1 
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This characterist ic,  which is due to the particular choice made for e, is helpful 
in the determination of the elements of E.. . * 

J 1  * 
The final equation for E.. for elliptical reference trajectories is (8-16). 

J1 
The angles EM and Ep, introduced in this equation, a r e  defined as follows: 

EM = $  (Ej  - Ei) (8-17) 

(8-18) 1 Ep = 2 (E. + Ei) 
J 

I 
Equation (8-16) expresses all the elements of C.. in t e rms  of only four quantities, 
namely the eccentricity e and the mean angular motion n of the reference tra- 
jectory, and the eccentric anomalies Ei and Ei.  

J 1  

* 
Cii is presented as the sum of 

two matrices.  The first of the two is a diago6al m k i x  
reading from top to bottom, a r e  equal, respectively, to 

whose diagonal elements, 

Every t e r m  in every element of the second of the two matr ices  contains either 
E the first 
matrix becomes the identity matrix and the second matrix becomes the zero 
matrix. 
(8-2). 

or sin EM. From this information it is clear  that when t .  = t M J i’ 

* 
Thus, Cii is the sixth-order identity matrix, as indicated by Equation 

For this  special case, in  which the reference trajectory is an ellipse and one 
of the reference trajectory coordinate systems is used, a stronger statement can 
be made about the determinant of C.. than that of Equation (8-6). 
determinant of C.. equal to  unity, but there a r e  two sub-matrices that can be 
formed, the determinant of each of which is equal to unity. 
consists of the sixteen in-plane elements of C . :  the second consists of the four 
out - of - plane elements of C . . 

9. The Correction Matrix 

I 
Not only is the * J1 

J1 
The first sub-matrix * 

* J1’ 
J1- 

In addition to the vectors 2 and - e, another useful set  of constants defining 
the vehicle’s variant path consists of the two position variations 6ri and 6 r . . 

-3 
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I 
I In particular, it is desirable to be able to express the velocity variations 6vi 

l and 6 v .  in t e rms  of 6 - r and 6 -j' r The equations have the form 
-J 

t * 
6zi = J.. 6 r i +  K.. 61- 

1J - u -1 

* 9 
6v. = K . .  6 r i  + J . .  6 r  
-3 J1 - ~1 -j 

(9- 1) 

(9-2) 

I * -  
By pre-multiplying both sides of (9- 1) by K '. 6 r can be written in  t e rms  

i j  -j 
of ICi' 

6r -j = [-k..-' 1J 5 . .  4 

From (8-1) and (8-41, 
, r 

6 r  -j = [$Iji 

I Since zi is an  arbitrary vector, 

* * 
M . .  = - K . . - l  3 . .  

J1 1J 1J 

* - 1  * 
Nji = K.. 1J 

k i j  -'Ix -i  

"..I ji -i x 

(9-3) 

(9-4) 

(9- 5) 

(9-6) 

* * 
The last t w o  equations can be solved for J.. and K in t e rms  of the submatrices 

t * 1J i j  
I of C.. o r  C... 

J1 1J 

I 
(9- 7) 

* - 1  * * T - l *  T Mji = (Nij ) T.. 
1J 

s ij = -Nji  

t T - 1  K.. = N.. * -' = - (Nij ) 
1J J1 

(9- 8 )  

I It is shown on Page 697 of Reference (5) and in Appendix F of Reference (1) that 
J.. is a symmetrical matrix. 
* 
1J 

~ 

The preceding material describes the variant motion of a space vehicle in 
a gravitational field. Once the variant motion is known, the problem is to alter 
this motion by means of a midcourse correction so that t he  objective of the 
mission can be achieved. 
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The means of altering the motion is a short application of thrust from a 
reaction-type engine, Because the thrust application is so short in duration 
relative to the time required for the space voyage, it is treated mathematically 
as a thrust impulse. At the t ime of the correction, tCJ there  is a step change 
in vehicle velocity but no instantaneous change in vehicle position. 

I 

, Obviously, the correction causes a change in  the state vector 5 which char- I 

acterizes the variant motion. The superscripts - and + will  be used to distinguish ~ 

conditions applicable before the correction from those applicable after the cor- 
rection. The change in the state vector xC is given by 

[I" 
where - 0 

vector. The three components of - c are to be computed in such a manner that 
three specified design conditions are satisfied. 

is the three-dimensional zero vector and c is the velocity correction 

I , 
I 

It is apparent that a single correction cannot cause the vehicle to  return 
immediately to  its reference trajectory, because accomplishing this would re- 
quire that six conditions be met (i. e., 6y = g3, 6v - -  = 0 3) .  The three design 
conditions that are to  be satisfied are generally associated with the vehicle's 
state vector zD at the t ime of its arr ival  at the destination. 
tion is intended to establish a new variant path which modifies xD in some 
desired fashion. The difference between the corrected and the original state 

Thus the correc- 

vectors at time tD is related to  
at tC by the equation 

the corresponding difference in state vectors 

(9-10) 

The only type of guidance to be considered in  this paper is fixed-time-of- 
arrival guidance, in which it is stipulated that the space vehicle a r r ive  at the 
destination at the exact t ime specified by the reference trajectory. .Thus, the 
three mathematical conditions to be satisfied by the  midcourse correction are 
contained in t h e  simple equation 
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,Equations (9- 10) and (9- 11) can be solved for  the correction - c. 

* - 
= - KcD 6 g D  

(9- 11) 

(9- 12) 

Thus, desp te the fact that six quantities a re  required to de ine the variant path 
completely, only three (the components of 6 g D - )  are needed to determine the 
fixed-time-of-arrival velocity correction, Matrix KCD is designated the cor- 

rection matrix. 

* 

+ The resulting velocity variation 6vD at the destination can be determined 
from (9-101, with the aid of (9-7) a d  (9-8). 

The new and the old state vectors at tD a r e  related by the equation 

(9-13) 

(9- 14) 

' 

Equations (9- 12) and (9- 14) are applicable to  many-body gravitational fields. 
When the reference trajectory is an ellipse, analytic expressions for the elements 
of the required matrices KCD and JDC can be found from Equations (9-7), (9-8), 
and the relevant submatrices appearing in Equation (8- 16). These expressions 
are given in Equations (9-15) and (9-16). In (9-15), because subscript C precedes 
subscript D in  KCD, 

* * 

* 
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t 
On the other hand, subscript D precedes subscript C in JDcJ and therefore in 
(9-16) 

(9- 18) 1 EM = z (EC - ED) 

t t 
The denominator factor X in the expressions for JDc and KCD is defined by 

X = ( 3  EM - e sin EM cos EP) (cos E M  + e cos EP) - 4 sin EM 

(9-19) 
t t t 

The matrix NDc (or NCD), which must be inverted in order to obtain JDc 
and KCD8 becomes singular whenever the value of the  t rue anomaly difference 
(fD - fC) is equal to  an integer multiple of I radians and also when the factor x 
becomes zero. The smallest positive value of (fD - fC) for which X goes t o  zero 
is always greater than 2 s  radians. Therefore, for manned interplanetary flights, 
in which the  total transfer angle is normally not greater than 7~ radians, there 
is little cause for alarm about the singularities. A detailed discussion of the 
singularities is contained in Appendix 0 of Reference (1). 

t 

10. Comments on the  Application of the Analytic Solution 

The analytic solution of the linearized variant equations for elliptical mo- 
tion provides a relatively simple and yet quite accurate means of utilizing im- 
pulsive thrust for the midcourse guidance of an interplanetary space vehicle. 
Once the state vector xD has been estimated from measurements made during 
the flight, the velocity correction c can be directly determined from Equations 
(9-12) and (9-15). There are only five non-zero elements in the required KCD 
matrix; these can readily be determined as functions of EC8 the eccentric 
anomaly at the t ime of the correction. 

t 

The accuracy of the computation is enhanced by the fact that there  is no 
build-up of round-off error ,  as would be the case i f  numerical integration w e r e ,  
required. In the present solution all integration has been performed analytically, 
before the numerical computations are started. 

In similar fashion, there is a straightforward determination of the transi- 
t t 

tion matrix C.. which is useful in predicting xDJ and of the matrix JDc8 which 
111' 

is used in  obfaining the change in xD due to the correction. 

The two-body assumption requires that the nominal destination point be 
appreciably beyond the sphere of influence of the destination planet i f  high 
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accuracy is to be maintained. 
made, a radial distance from 
felt to provide a conservative 

Although no numerical studies have yet been 
the planet of the order  of one million miles is 
destination point for t r ips  to Venus or  Mars .  

The distant destination point is not a severe limitation on the applicability of 
the analytic solution, since in most missions some type of terminal guidance 
is required during the final phase of the  journey. 

Although the analysis of Section 6 makes use of the assumption that the 
reference trajectory is an ellipse of moderate eccentricity, the f i n a l  equations 
for Cji, JDc, and KCD are also applicable to  circular reference trajectories; 
they are not applicable if  the eccentricity of the reference trajectory appraoches 
very close t o  unity. It must be kept in mind that the analytic expressions given 
for these matrices are based on the p q z coordinate system, 

* *  * 

The computation of the correction f r o p  a knowledge of the estimated posi- 
tion variation at the destination can readily be accomplished by a small-scale 
digital computer of the type that would normally be carried on board the space 
vehicle. F o r  this reason it is possible to leave some latitude in the final choice 
of the t ime at which the correction is to be applied. If it is found to be desirable, 
the correction t ime can be made a function of the state vector xD inferred from 
the measurements made during the flight. 

On manned interplanetary flights it is possible for the astronauts to compute 
manually the velocity correction corresponding to an estimated position varia- 
tion and a specified time of correction. The manual computation serves  as a check 
of the operation of the digital machine, It may also have some advantages from 
the psychological viewpoint for t r i p s  of long duration. 

Finally, the analytic solution can be valuable in guidance along abort tra- 
jectories, for which elaborate pre-computation may not be feasible. 
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